
Q5 Transitions Solution
 
C1.  (a) (S) f 1 q 0 

 (b) (S) i 2 r S c 0  

 (c) (S) o 2 r S h 0 

 (d)(S) n 1 q 0

C2.  Put a tick (✓) in the box if the network generates this string,  

(a) (b) (c) (d) (e) (f) (g) 

 ✓  ✓ ✓   

 
 
C3. Change rule  h  as follows: S: eight → 0  
 
Additional rule  S : eigh → 1,2 

(Some other fixes are possible, but this is the most elegant and obvious)     

 
Explanation 
 
Transition networks are a very simple tool in computational linguistics and 

simultaneously serve two purposes. One, seen here, is to capture the way 
a text string can be 'generated', i.e. start from S and follow the rules. But 
the network can also be used for 'parsing' or analyzing a string to see if it's 

legal. Actually that is what C2 asked you to do. What you did is probably 
similar to what a computer program would do. For example, to analyse 

'sixteen', look for a rule that starts from state S and generates any of the 
first few characters: yes, [f] generates 'six'. Rule [f] says you can end (0) or 
go to state 1 or 2. Which rules can start from either of those states? Rules 

[q] nd [r]. Do either of those rules lead you on to the next part of the string, 
'teen'? Yes, rule [q]. And, crucially, does that rule then lead you to the exit 
state? Yes.  

 
Let's try the same thing with C2e 'fortythirty'. We want the network to fail 

for this. Let's see if it does. First we look for a rule that starts from state S 
and generates any of the first few characters: only rule [p] works. Note that 
rule [d] requires 'four', not 'for'. Rule [p] can only lead to one state, 2. And 

only one rule, [r] can lead off from that state. Rule [r] is looking for 'ty', 
which we do have. So far so good. Where can you go from rule [r]? Back to 
the start S, or finish (0). Can we generate 'thirty' from S? Yes we can (you 

should really trace the steps, but they are similar to 'forty': rule [m] then 
rule [r]. So 'fortythirty' is legal, even though we don't want it to be. 


